Equilibria in cobalt(II)–amino acid–imidazole system under oxygen-free conditions: effect of side groups on mixed-ligand systems with selected L-α-amino acids
نویسندگان
چکیده
BACKGROUND Heteroligand Co(II) complexes involving imidazole and selected bio-relevant L-α-amino acids of four different groups (aspartic acid, lysine, histidine and asparagine) were formed by using a polymeric, pseudo-tetrahedral, semi-conductive Co(II) complex with imidazole-[Co(imid)2]n as starting material. The coordination mode in the heteroligand complexes was unified to one imidazole in the axial position and one or two amino acid moieties in the appropriate remaining positions. The corresponding equilibrium models in aqueous solutions were fully correlated with the mass and charge balance equations, without any of the simplified assumptions used in earlier studies. Precise knowledge of equilibria under oxygen-free conditions would enable evaluation of the reversible oxygen uptake in the same Co(II)-amino acid-imidazole systems, which are known models of artificial blood-substituting agents. RESULTS Heteroligand complexes were formed as a result of proton exchange between the two imidazole molecules found in the [Co(imid)2]n polymer and two functional groups of the amino acid. Potentiometric titrations were confirmed by UV/Vis titrations of the respective combinations of amino acids and Co-imidazole. Formation of MLL' and ML2L' species was confirmed for asparagine and aspartic acid. For the two remaining amino acids, the accepted equilibrium models had to include species protonated at the side-chain amine group (as in the case of lysine: MLL'H, ML2L'H2, ML2L'H) or at the imidazole N1 (as in the case of histidine: MLL'H and two isomeric forms of ML2L'). Moreover, the Δlog10 β, log10 β stat, Δlog10 K, and log10 X parameters were used to compare the stability of the heteroligand complexes with their respective binary species. The large differences between the constant for the mixed-ligand complex and the constant based on statistical data Δlog10 β indicate that the heteroligand species are more stable than the binary ones. The parameter Δlog10 K, which describes the influence of the bonded primary ligand in the binary complex Co(II)(Himid) towards an incoming secondary ligand (L) forming a heteroligand complex, was negative for all the Amac ligands (except for histidine, which shows stacking interactions). This indicates that the mixed-ligand systems are less stable than the binary complexes with one molecule of imidazole or one molecule of amino acid, in contrast to Δlog10 β, which deals with binary complexes Co(II)(Himid)2 and Co(II)(AmacH-1)2 containing two ligand molecules. The high positive values of the log10 X disproportionation parameter were in good agreement with the results of the Δlog10 β calculations mentioned above. CONCLUSION The mixed-ligand MLL'-type complexes are formed at pH values above 4-6 (depending on the amino acid used), however, the so-called "active" ML2L'-type complexes, present in the equilibrium mixture and known to be capable of reversible dioxygen uptake, attain maximum share at a pH around nine. For all the amino acids involved, the greater the excess of amino acid, the lower the pH where the given heteroligand complex attains maximum share. The results of our equilibrium studies make it possible to evaluate the oxygenation constants in full accordance with the distribution of species in solution. Such calculations are needed to drive further investigations of artificial blood-substituting systems.
منابع مشابه
Studies on Nickel(II)-Pyridoxamine-Imidazole Containing Mixed Ligand Complex Systems
The stability constants of species present in the systems Ni(II)-pyridoxamine(pym)(A) and Ni(II)-pyridoxamine(pym)(A)-imidazole containing ligands(B) [B = imidazole(him), benzimidazole(bim), histamine(hist) and L-histidine(his)] have been determined pH-metrically using the MINIQUAD computer program. The existence of the species NiAH, NiA and NiA2 was proven for the Ni(II)-pym(A)...
متن کاملReversible uptake of molecular oxygen by heteroligand Co(II)–l-α-amino acid–imidazole systems: equilibrium models at full mass balance
BACKGROUND The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglo...
متن کاملCatalytic Effects of Carbon Nanotubes on Complexation of Some Amino Acids via Cobalt Cation Catalyst
In this research, investigation of the adsorption isotherms and the effect of solution conditions such as pH and concentration of complexation of some amino acids with cobalt(II) nitrate six-hydrate upon multi-wall type carbon nanotube (CNT) were done. The adsorption capacity of complexation of amino acids onto the surface of carbon nanotube increased with the pH from acidic to alkaline. At pH ...
متن کاملSynthesis, characterization and selective oxidation using a new copper (II) Schiff base complex derived from Alanine and 4-chloro3- formyl coumarin
A novel Schiff-base ligand (L: 2-[(4-chloro-2-oxo-2H-chromen-3-ylmethylene)-amino] propionic acid) was prepared from the reaction of 4-chloro3-formylcoumarin and alanine amino acid. Copper (II) complex was synthesized from the reaction of the ligand with Cu (OAc)2. H2O in ethanol. The ligand and its metal complex were characterized by elemental analysis (CHN), ICP, thermal analysis (TGA), Fouri...
متن کاملSynthesis and Studies of Spectral and Thermal Properties of Some Mixed Ligand Complexes of Thorium(IV) and Dioxouranium(VI) With Semicarbazones as Primary Ligand and Sulfoxide as Secondary Ligand
The present work describes the studies on the coordination behaviour of 4[N-(benzalidene) amino]antipyrine semicarbazone (BAAPS) (I), 4[N-(furfural)amino]antipyrine semicarbazone (FFAAPS) (II) and 4[N-(cinnamalidene)amino]antipyrine semicarbazone (CAAPS) (III) in presence of dimethyl sulfoxide (DMSO) or diphenyl sulfoxide (DPSO) towards Th4+ and UO22+ salts. All the complexes were isolate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016